Răspuns :
[tex]\bf S = 2^{1} + 2^{2} + 2^{3} +2^{4}+ ....+ 2^{2004}[/tex]
Grupăm câte 4 termeni și dăm factor comun pe 2 la puterea cea mai mică.
[tex]S = 2^{1}\cdot \Big( 2^{1-1} + 2^{2-1} + 2^{3-1} +2^{4-1} \Big)+...+ 2^{2001}\cdot \Big( 2^{0} + 2^{1} + 2^{2} +2^{3} \Big)[/tex]
[tex]S = 2^{1}\cdot \Big( 2^{0} + 2^{1} + 2^{2} +2^{3} \Big)+...+ 2^{2001}\cdot \Big( 2^{0} + 2^{1} + 2^{2} +2^{3} \Big)[/tex]
[tex]S = 2^{1}\cdot \Big( 1 + 2 + 4 +8\Big)+...+ 2^{2001}\cdot \Big( 1 + 2 + 4 +8 \Big)[/tex]
[tex]S = 2^{1}\cdot 15+...+ 2^{2001}\cdot 15[/tex]
[tex]S = 15\cdot \Big( 2^{1}+2^{5}+2^{9} +2^{13}+...+ 2^{2001}\Big)[/tex]
[tex]\pink{\boxed{~S = 3\cdot 5\cdot \Big(2^{1}+2^{5}+2^{9} +...+ 2^{2001}\Big)~\vdots~5~}}[/tex]
_____________________________
[tex]\bf S = 2^{1} + 2^{2} + 2^{3} +2^{4}+ ....+ 2^{2004}[/tex]
Grupăm câte 3 termeni și dăm factor comun pe 2 la puterea cea mai mică.
[tex]S = 2^{1}\cdot \Big( 2^{1-1} + 2^{2-1} + 2^{3-1} \Big)+...+ 2^{2002}\cdot \Big( 2^{0} + 2^{1} + 2^{2} \Big)[/tex]
[tex]S = 2^{1}\cdot \Big( 2^{0} + 2^{1} + 2^{2} \Big)+...+ 2^{2002}\cdot \Big( 2^{0} + 2^{1} + 2^{2} \Big)[/tex]
[tex]S = 2^{1}\cdot \Big( 1 + 2 +4\Big)+...+ 2^{2002}\cdot \Big( 1 + 2 +4\Big)[/tex]
[tex]S = 2^{1}\cdot 7+...+ 2^{2002}\cdot 7[/tex]
[tex]\purple{\boxed{~S = 7\cdot \Big( 2^{1}+2^{4}+2^{8} +...+ 2^{2002}\Big)~\vdots~7~}}[/tex]
[tex]==pav38==[/tex]
Vă mulțumim că ați ales să vizitați site-ul nostru dedicat Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți alte întrebări sau aveți nevoie de asistență suplimentară, nu ezitați să ne contactați. Vă așteptăm cu drag să reveniți și nu uitați să ne salvați în lista de favorite!