Răspuns :
Explicație pas cu pas:
Pentru a determina ecuatia unei dreptei cand stim coordonatele a doua puncte de pe aceasta avem mai multe posibilitati.
Metoda 1 (cu determinant):
[tex]AB: \left|\begin{array}{ccc}x_A&y_A&1\\x_B&y_B&1\\x&y&1\end{array}\right|=0 \\AB: \left|\begin{array}{ccc}-2&-5&1\\-2&7&1\\x&y&1\end{array}\right| =0\\AB:-14-2y-5x-7x+2y-10=0\\AB:-12x-24=0|:(-12)\\AB: x+2=0[/tex]
Metoda 2 (cu formula de determinare a ecuatiei dreptei cand stim coordonatele a doua puncte):
[tex]AB: \frac{x-x_A}{x_B-x_A}=\frac{y-y_A}{y_B-y_A}\\AB: \frac{x+2}{-2+2}=\frac{y+5}{7+5}\\AB: 12(x+2)=0\\AB: x+2=0[/tex]
Metoda 3 (gasind vectorul director al dreptei AB si punand conditia ca A sau B sa apartina dreptei):
Vectorul director este:
[tex]\vec{AB}=(x_B-x_A)\vec{i}+(y_B-y_A)\vec{j}=12\vec{j}[/tex]
Coordonatele vectorului director sunt:
[tex]\vec{AB}=(0,12)[/tex]
Ecuatia dreptei va fi:
[tex]AB: \frac{x-x_A}{x_{\vec{AB}}}=\frac{y-y_A}{y_{\vec{AB}}}\\AB: \frac{x+2}{0}=\frac{y+5}{12}\\AB: x+2=0[/tex]
Sau:
[tex]AB: \frac{x-x_B}{x_{\vec{AB}}}=\frac{y-y_B}{y_{\vec{AB}}}\\AB: \frac{x+2}{0}=\frac{y-7}{12}\\AB: x+2=0[/tex]
Vă mulțumim că ați ales să vizitați site-ul nostru dedicat Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți alte întrebări sau aveți nevoie de asistență suplimentară, nu ezitați să ne contactați. Vă așteptăm cu drag să reveniți și nu uitați să ne salvați în lista de favorite!