[tex]\displaystyle\\
AB= \sqrt{(1-2)^2+(1-4)^2}= \sqrt{(-1)^2+(-3)^2}= \sqrt{1+9}=\boxed{\sqrt{10}}\\\\
BC= \sqrt{(3-1)^2+(-3-1)^2}=\sqrt{(2)^2+(-4)^2}=\sqrt{4+16}=\boxed{\sqrt{20}}\\\\
AC=\sqrt{(3-2)^2+(-3-4)^2}=\sqrt{(1)^2+(-7)^2}=\sqrt{1+49}=\boxed{\sqrt{50}}\\\\
\text{Nu am scos intregii de sub radical pentru a le compara mai usor.}\\\\
{\bf \sqrt{50} \ \textgreater \ \sqrt{20}\ \textgreater \ \sqrt{10}}\\\\
{\bf AC \ \textgreater \ BC\ \textgreater \ AB}\\\\
\Longrightarrow~~~\boxed{\text{\bf AC este cea mai mare latura.}}\\\\
[/tex]