Răspuns :
Triunghiul ABC dreptunghic isoscel
masura unghiului A=90 grade
Fie AM mediana, M=mijlocul laturii BC
Triunghiul este isoscel => AM este si inaltime
Fiind mediana corespunzatoare ipotenuzei, este cat jumatate din aceasta
AM= BC/2=6/2=3cm
Aria=baza ori inaltimea supra 2=BC ori AM supra 2=6 ori 3 supra 2=18 supra 2= 9 cm patrati
masura unghiului A=90 grade
Fie AM mediana, M=mijlocul laturii BC
Triunghiul este isoscel => AM este si inaltime
Fiind mediana corespunzatoare ipotenuzei, este cat jumatate din aceasta
AM= BC/2=6/2=3cm
Aria=baza ori inaltimea supra 2=BC ori AM supra 2=6 ori 3 supra 2=18 supra 2= 9 cm patrati
[tex]\displaystyle\bf\\ \text{Se da:}\\ \Delta ABC~\text{dreptunghic isoscel cu } m(\ \textless \ \!\!A)=90^o\\ AB=AC\\ BC=6~cm=\text{Ipotenuza}\\ \text{Se cere:}\\ \text{Aria}~\Delta ABC\\\\ \text{Vom rezolva problema in 3 moduri:}\\\\ \texttt{M1}:\\ A=\frac{BC^2}{4}=\frac{6^2}{4}=\frac{36}{4}=\boxed{\bf9~cm^2}\\\\ \text{Aceasta formula este doar pentru triunghiul dreptunghic isoscel.} [/tex]
[tex]\displaystyle \bf\\ \texttt{M2}:\\ \text{Calculam AD=inaltimea ipotenuzei, care este si mediana.}\\\\ AD=\frac{BC}{2}=\frac{6}{2}=3~cm\\\\ A=\frac{BC\times AD}{2}=\frac{6\times3}{2}=\frac{18}{2}=\boxed{\bf9~cm^2}\\\\\\ \texttt{M3}:\\ \text{Calculam catetele triunghiului dreptunghic isoscel.}\\ AB=AC= \frac{BC}{ \sqrt{2} } = \frac{6}{ \sqrt{2} } =\frac{6\sqrt{2} }{ 2} = 3\sqrt{2} \\\\ A = \frac{AB \times AC}{2} = \frac{3\sqrt{2}\times 3\sqrt{2}}{2} = \frac{9\times 2}{2} = \boxed{\bf 9~cm^2} [/tex]
Vă mulțumim că ați ales să vizitați site-ul nostru dedicat Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți alte întrebări sau aveți nevoie de asistență suplimentară, nu ezitați să ne contactați. Vă așteptăm cu drag să reveniți și nu uitați să ne salvați în lista de favorite!